/* **************************************************************
* Arduino sketch
* Author: Martijn Quaedvlieg / Jan de Laet (january 2017)
* Generated with Generate script by Jan de Laet
*
* *************************************************************/
#include
// define the activation method ABP or OTAA
#define ACT_METHOD_ABP
// show debug statements; comment next line to disable debug statements
#define DEBUG
/* **************************************************************
* keys for device
* *************************************************************/
static const uint8_t PROGMEM NWKSKEY[16] = { 0xD5, 0xBB, 0xE1, 0x51, 0x8B, 0xE8, 0x68, 0x66, 0x7D, 0x71, 0xA0, 0x86, 0xBA, 0x0E, 0x01, 0xB3 };
static const uint8_t PROGMEM APPSKEY[16] = { 0x8E, 0xC3, 0x11, 0xD1, 0x17, 0xE2, 0xE2, 0x8D, 0x53, 0x65, 0xAF, 0x1B, 0xD3, 0x5D, 0x2A, 0x37 };
static const uint32_t DEVADDR = 0x26011F50;
// Uses LMIC libary by Thomas Telkamp and Matthijs Kooijman (https://github.com/matthijskooijman/arduino-lmic)
// Pin mappings based upon PCB Doug Larue
#include
#include <hal/hal.h>
// Declare the job control structures
static osjob_t sendjob;
// These callbacks are only used in over-the-air activation, so they are
// left empty when ABP (we cannot leave them out completely unless
// DISABLE_JOIN is set in config.h, otherwise the linker will complain).
#ifdef ACT_METHOD_ABP
void os_getArtEui (u1_t* buf) { }
void os_getDevEui (u1_t* buf) { }
void os_getDevKey (u1_t* buf) { }
#else
void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);}
void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);}
#endif
/* **************************************************************
* Pin mapping
* *************************************************************/
/*const lmic_pinmap lmic_pins = {
.nss = 10,
.rxtx = LMIC_UNUSED_PIN,
.rst = 0,
.dio = {4, 5, 7},
};
*/
// ATMEGA Mighty Core. lorawan.lnwshop.com
const lmic_pinmap lmic_pins = {
.nss = 14,
.rxtx = LMIC_UNUSED_PIN,
.rst = LMIC_UNUSED_PIN,
.dio = { 12, 13, 15 },
};
// HTU21D settings
#include
#include
float humd;
float temp;
// Create an instance of the object
HTU21D myHumidity;
//Sensor data
static uint8_t dataTX[3];
/* **************************************************************
* user settings
* *************************************************************/
unsigned long starttime;
unsigned long cycle_length = 7 * 1 * 1000UL; // cycle * mins_or_secs * 1000;
/* **************************************************************
* setup
* *************************************************************/
void setup() {
// Wait (max 10 seconds) for the Serial Monitor
while ((!Serial) && (millis() < 10000)){ }
//Set baud rate
Serial.begin(9600);
Serial.println(F("test (template version: 26Dec2016 generated: 25Apr2018)"));
init_node();
init_sensor();
starttime = millis();
}
/* **************************************************************
* loop
* *************************************************************/
void loop() {
do_sense();
// check if need to send
if ((millis() - starttime) > cycle_length) { build_data(); do_send(); starttime = millis(); }
}
/* **************************************************************
* sensor code, typical would be init_sensor(), do_sense(), build_data()
* *************************************************************/
/* **************************************************************
* init the sensor
* *************************************************************/
void init_sensor() {
myHumidity.begin();
}
/* **************************************************************
* do reading
* *************************************************************/
void do_sense() {
humd = myHumidity.readHumidity();
temp = myHumidity.readTemperature();
#ifdef DEBUG
Serial.print(F("Time: "));
Serial.print(millis());
Serial.print(F(" Temperature: "));
Serial.print(temp, 3);
Serial.print(F(" C: "));
Serial.print(F(" Humidity: "));
Serial.print(humd, 2);
Serial.print(F(""));
Serial.println();
#endif
}
/* **************************************************************
* build data to transmit in dataTX
* *************************************************************/
void build_data() {
//convert float to int, times 100 to keep 2 decimals)
int temp100 = (int) (temp*100);
#ifdef DEBUG
Serial.print(F("Time:"));
Serial.print(millis());
Serial.print(F(" Send Temperature:"));
Serial.print(temp100);
Serial.println();
#endif
// map it to dataTX; 1 leading byte (0x00) plus 2 data bytes
/* *************************************************
* Suggested payload function for this data
*
* if (bytes[0] == 0x00) {
* var temperature = (bytes[1] << 8) | bytes[2];
* return { payload: temperature / 100.0 };
* }
*
* ************************************************/
dataTX[0] = 0x00; //first byte is send as 00 to recognise this is a temperature in our dashboard
dataTX[1] = temp100 >> 8;
dataTX[2] = temp100 & 0xFF;
}
/* **************************************************************
* radio code, typical would be init_node(), do_send(), etc
* *************************************************************/
/* **************************************************************
* init the Node
* *************************************************************/
void init_node() {
#ifdef VCC_ENABLE
// For Pinoccio Scout boards
pinMode(VCC_ENABLE, OUTPUT);
digitalWrite(VCC_ENABLE, HIGH);
delay(1000);
#endif
// LMIC init
os_init();
// Reset the MAC state. Session and pending data transfers will be discarded.
LMIC_reset();
#ifdef ACT_METHOD_ABP
// Set static session parameters. Instead of dynamically establishing a session
// by joining the network, precomputed session parameters are be provided.
#ifdef PROGMEM
// On AVR, these values are stored in flash and only copied to RAM
// once. Copy them to a temporary buffer here, LMIC_setSession will
// copy them into a buffer of its own again.
uint8_t appskey[sizeof(APPSKEY)];
uint8_t nwkskey[sizeof(NWKSKEY)];
memcpy_P(appskey, APPSKEY, sizeof(APPSKEY));
memcpy_P(nwkskey, NWKSKEY, sizeof(NWKSKEY));
LMIC_setSession (0x1, DEVADDR, nwkskey, appskey);
#else
// If not running an AVR with PROGMEM, just use the arrays directly
LMIC_setSession (0x1, DEVADDR, NWKSKEY, APPSKEY);
#endif
#if defined(CFG_eu868)
// Set up the channels used by the Things Network, which corresponds
// to the defaults of most gateways. Without this, only three base
// channels from the LoRaWAN specification are used, which certainly
// works, so it is good for debugging, but can overload those
// frequencies, so be sure to configure the full frequency range of
// your network here (unless your network autoconfigures them).
// Setting up channels should happen after LMIC_setSession, as that
// configures the minimal channel set.
// NA-US channels 0-71 are configured automatically
LMIC_setupChannel(0, 868100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI); // g-band
LMIC_setupChannel(2, 868500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(3, 867100000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(4, 867300000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(5, 867500000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(6, 867700000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(7, 867900000, DR_RANGE_MAP(DR_SF12, DR_SF7), BAND_CENTI); // g-band
LMIC_setupChannel(8, 868800000, DR_RANGE_MAP(DR_FSK, DR_FSK), BAND_MILLI); // g2-band
// TTN defines an additional channel at 869.525Mhz using SF9 for class B
// devices' ping slots. LMIC does not have an easy way to define set this
// frequency and support for class B is spotty and untested, so this
// frequency is not configured here.
#elif defined(CFG_us915)
// NA-US channels 0-71 are configured automatically
// but only one group of 8 should (a subband) should be active
// TTN recommends the second sub band, 1 in a zero based count.
// https://github.com/TheThingsNetwork/gateway-conf/blob/master/US-global_conf.json
LMIC_selectSubBand(1);
#endif
// Disable link check validation
LMIC_setLinkCheckMode(0);
// TTN uses SF9 for its RX2 window.
LMIC.dn2Dr = DR_SF9;
// Set data rate and transmit power (note: txpow seems to be ignored by the library)
LMIC_setDrTxpow(DR_SF7,14);
#endif
#ifdef ACT_METHOD_OTAA
// got this fix from forum: https://www.thethingsnetwork.org/forum/t/over-the-air-activation-otaa-with-lmic/1921/36
LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100);
#endif
}
/* **************************************************************
* send the message
* *************************************************************/
void do_send() {
Serial.print(millis());
Serial.print(F(" Sending.. "));
send_message(&sendjob);
// wait for send to complete
Serial.print(millis());
Serial.print(F(" Waiting.. "));
while ( (LMIC.opmode & OP_JOINING) or (LMIC.opmode & OP_TXRXPEND) ) { os_runloop_once(); }
Serial.print(millis());
Serial.println(F(" TX_COMPLETE"));
}
/* *****************************************************************************
* send_message
* ****************************************************************************/
void send_message(osjob_t* j) {
// Check if there is not a current TX/RX job running
if (LMIC.opmode & OP_TXRXPEND) {
Serial.println(F("OP_TXRXPEND, not sending"));
} else {
// Prepare upstream data transmission at the next possible time.
LMIC_setTxData2(1, dataTX, sizeof(dataTX), 0);
Serial.println(F("Packet queued"));
}
}
/*******************************************************************************/
void onEvent (ev_t ev) {
switch (ev) {
case EV_SCAN_TIMEOUT:
Serial.println(F("EV_SCAN_TIMEOUT"));
break;
case EV_BEACON_FOUND:
Serial.println(F("EV_BEACON_FOUND"));
break;
case EV_BEACON_MISSED:
Serial.println(F("EV_BEACON_MISSED"));
break;
case EV_BEACON_TRACKED:
Serial.println(F("EV_BEACON_TRACKED"));
break;
case EV_JOINING:
Serial.println(F("EV_JOINING"));
break;
case EV_JOINED:
Serial.println(F("EV_JOINED"));
// Disable link check validation (automatically enabled
// during join, but not supported by TTN at this time).
LMIC_setLinkCheckMode(0);
break;
case EV_RFU1:
Serial.println(F("EV_RFU1"));
break;
case EV_JOIN_FAILED:
Serial.println(F("EV_JOIN_FAILED"));
break;
case EV_REJOIN_FAILED:
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
if (LMIC.dataLen) {
// data received in rx slot after tx
Serial.print(F("Data Received: "));
Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
Serial.println();
}
// schedule next transmission
// os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL), send_message);
break;
case EV_LOST_TSYNC:
Serial.println(F("EV_LOST_TSYNC"));
break;
case EV_RESET:
Serial.println(F("EV_RESET"));
break;
case EV_RXCOMPLETE:
// data received in ping slot
Serial.println(F("EV_RXCOMPLETE"));
break;
case EV_LINK_DEAD:
Serial.println(F("EV_LINK_DEAD"));
break;
case EV_LINK_ALIVE:
Serial.println(F("EV_LINK_ALIVE"));
break;
default:
Serial.println(F("Unknown event"));
break;
}
}